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Abstract

To carry out the acoustic analysis of dissipative silencers with uniform cross-section, the application of the mode

matching method at the geometrical discontinuities is an attractive option from a computational point of view. The

consideration of this methodology assumes, in general, that the modes associated with the transversal geometry of each

element with uniform cross-section are known for the excitation frequencies considered in the analysis. The calculation of

the transversal modes is not, however, a simple task when the acoustic system involves perforated elements and absorbent

materials. The current work presents a modal approach to calculate the transversal modes and the corresponding axial

wavenumbers for dissipative mufflers of uniform (but arbitrary) cross-section. The proposed technique is based on the

division of the transversal section into subdomains and the subsequent use of a substructuring procedure with two sets of

modes to improve the convergence. The former set of modes fulfils the condition of zero pressure at the common boundary

between transversal subdomains while the latter satisfies the condition of zero derivative in the direction normal to the

boundary. The approach leads to a versatile methodology with a moderate computational effort that can be applied to

mufflers commonly found in real applications. To validate the procedure presented in this work, comparisons are provided

with finite element predictions and results available in the literature, showing a good agreement. In addition, the procedure

is applied to an example of practical interest.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Absorbent materials are widely used by muffler manufacturers to provide suitable noise attenuation. These
materials are usually included in liner ducts and their acoustic behaviour can be studied with simplified
approaches, such as the fundamental (or least attenuated) mode model or the hypothesis of locally reacting
impedance [1]. Higher order modes must be considered, however, in the calculations, depending on the
transversal dimensions of the ducts and the frequency range to be modelled accurately. In this case, a three-
dimensional model must be used and, since analytical solutions are only available for very simple geometries,
numerical techniques, such as the finite element method [2,3] are required. Nevertheless, the high
computational effort associated with three-dimensional finite element models and the difficulty to establish
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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useful and intuitive design relations between the characteristics of the muffler and its acoustic attenuation
behaviour, lead to the consideration of modal solutions.

Modal methods, and particularly the mode matching method, have been successfully applied to the acoustic
analysis of mufflers. This method carries out the coupling of the transversal modes by means of the proper
acoustic conditions at the axial geometrical discontinuities between the components of the muffler. Åbom [4]
applied this methodology to a circular expansion chamber with extended ducts and locally reacting lateral
walls. He used the analytical transversal modes associated with a circular geometry but pointed out the
possibility of obtaining the modal description by means of numerical techniques such as the finite element
method. With the same approach, Selamet et al. [5–8] analysed the acoustic behaviour of several types of
mufflers, including the concentric and eccentric circular expansion chamber, the circular flow-reversing
chamber and expansion chambers with double outlet. The mode matching method can be also applied to
moderately complex geometries, as shown in the work of Selamet et al. [9] in which a double chamber muffler
with extended ducts is studied, and the work of Denia et al. [10], associated with an elliptical chamber with
double outlet. In summary, the mode matching method has been applied to moderately complex geometries of
reactive mufflers and provides an accurate solution with a suitable convergence. For mufflers involving
complex cross-sections, the difficulties in obtaining the corresponding modes analytically arise and numerical
methods must be employed [2,3].

In the presence of an absorbent material, some differences are found regarding the propagation of the
acoustic waves. If the solid phase of the material can be assumed as infinitely rigid, only a compression wave
propagates and the material can be characterized, from a macroscopic point of view, by a complex
wavenumber and a complex impedance [11]. However, if the solid structure of the absorbent material has a
finite stiffness, two compression waves and a shear wave propagate through the medium and the Biot’s
poroelastic model [12] adapted to the acoustic problem by Allard et al. [13] is usually considered. The first
model is especially accurate when fibrous materials are used, while the poroelastic model, which takes into
account the interaction between the solid structure and the pores, is preferred when porous materials are
present. The first macroscopic model has been employed successfully in several works, the only restriction
being that the type of absorbent material considered must fulfil the hypothesis of high stiffness of the solid
phase. Astley and Cummings [14] studied the acoustical behaviour of a rectangular duct with liner on its four
sides and mean flow by means of the finite element method. The authors observed a good agreement between
the predictions and the measurements. Later, Bies et al. [15] presented a general modal scheme to compute the
acoustic behaviour of ducts with arbitrary cross-section and mean flow. The work considered circular and
rectangular ducts, and a number of design charts were provided. Several techniques are available to evaluate
the transversal modes of the components involved in the muffler. Kirby [16] presented a simplified closed
analytical solution based on approximations of the Bessel functions, for the case of a perforated dissipative
circular concentric resonator in the presence of mean flown confined in the central tube, and showed the effect
of the perforate porosity in the behaviour of the silencer. Later, the same author [3] proposed a more general
methodology to predict the acoustic behaviour of dissipative silencers of arbitrary cross-section in presence of
mean flow, based on the calculation of transversal modes by means of the finite element method and the point
collocation technique to couple the modal expansions at the geometrical discontinuities. Glav [17] studied a
dissipative resonator with arbitrary cross-section, but neglected the influence of mean flow. He adopted a
point collocation approach for calculating the transversal modes whilst the coupling between the solutions at
the interfaces was performed by the mode matching method. Recent works [18–20] have analysed the
behaviour of circular dissipative mufflers considering analytical transversal modes. To provide an analytical
expression for the transversal pressure field, the authors evaluated the pressure modes and wavenumbers
solving the characteristic equation, which involves the transverse coupling of the acoustic fields in the duct and
the chamber by proper boundary conditions at the interface.

The purpose of this work is to develop a computationally efficient modal method for the evaluation of the
transversal modes and axial wavenumbers in perforated dissipative mufflers of arbitrary, but axially uniform,
cross-sections. The method is based on Component Mode Synthesis and incorporates two sets of modes for
the acoustic modelling of the transversal subdomains, leading to a faster convergence in comparison with
other modal descriptions [21]. The authors propose, specifically, the utilization of two sets of modes satisfying,
respectively, the conditions of zero normal velocity and zero pressure at the interface between subdomains
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Fig. 1. Component mode synthesis scheme for calculation of transversal modes.
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(Fig. 1). Previous work of the authors [22] has demonstrated the potential of this methodology in reactive
configurations. It will be shown later that the use of these two sets of modes leads to an efficient approach for
dissipative mufflers.

The technique proposed in this work presents some advantages in comparison with other procedures.
A matrizant eigenvalue problem is finally obtained, which can be solved with commercial mathematical
packages. Therefore, the technique avoids iterative schemes associated with the nonlinear eigenequation
found, for instance, in the analytical modelling of perforated dissipative mufflers with circular cross-section.
When solving this nonlinear eigenequation, some problems may arise, such as sensitivity of the final solution
to the initial guess and modal jumping [16]. The usual significant expenditure associated with a full three-
dimensional finite element model is also avoided, since the proposed methodology decouples the transverse
acoustic field, thus leading to a two-dimensional problem. In addition, more useful information is obtained
from a practical point of view, such as mode shapes and modal attenuation rates.

The formulation of the problem, including the governing equations, is presented in Section 2.1. The
approach proposed to calculate the transversal modes of each component is derived in Section 2.2, considering
a geometry that involves two arbitrary subdomains connected by a perforated tube. Section 2.3 is related to
the application of the mode matching method when the transversal modes are evaluated by the finite element
method. Some aspects regarding the convergence of the transversal modes are treated in Section 2.4. Finally,
the method is validated by comparison with three-dimensional finite element calculations.
2. Formulation of the problem

2.1. Mathematical approach

The acoustic modelling of the muffler is carried out in this section, assuming the following hypotheses:
(1) the muffler can be divided into components of uniform cross-section; (2) these components can be
subdivided into disjoint subdomains connected directly or by perforated elements; (3) the medium of
propagation associated with each subdomain (air or absorbent material) is defined by its acoustic impedance
and wavenumber and (4) the mean flow is not considered.

In order to simplify the presentation of the component mode synthesis approach proposed to build
the transversal modes, and without loss of generality, a muffler component with arbitrary but uniform
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Fig. 2. Muffler and subdomains considered for the application of the component mode synthesis approach.
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cross-section is considered, including two subdomains with different medium of propagation, air and
absorbent material, respectively, as shown in Fig. 2.

The transversal subdomains, denoted by A and B, are connected by a perforated tube that is modelled by its
acoustic impedance Zp [1]. The axial direction of the muffler coincides with the z-axis of the Cartesian
coordinate system OXYZ. For harmonic time variation, the propagation of sound in subdomain A, where the
medium is assumed to be air, is governed by the well-known Helmholtz equation [1]

r2pA þ k2
0pA ¼ 0, (1)

r2 being the laplacian operator, pA the complex amplitude of the acoustic pressure, and k0 the wavenumber
defined by o=c0 (where c0 is the speed of sound and o is the angular frequency). The acoustic wave equation in
the absorbent material may be written as [11]

r2pB þ
~k
2
pB ¼ 0, (2)

where pB is the amplitude of the acoustic pressure and ~k is the complex wavenumber associated with the
absorbent material.

Taking into account that the cross-section under consideration is uniform and using separation of variables,
the amplitude of the pressure may be expressed as

pðx; y; zÞ ¼ Cxyðx; yÞe�jkzz,

Cxyðx; yÞ ¼
Cxy

A ðx; yÞ; ðx; yÞ 2 A;

Cxy
B ðx; yÞ; ðx; yÞ 2 B;

(
ð3Þ

where Cxy denotes the transversal mode and kz is the axial wavenumber. If a suitable definition of the
transversal mode in each subdomain is used, Eq. (3) is valid for any point of the cross-section. Introducing Eq.
(3) in Eqs. (1) and (2), associated with the air and the absorbent material, respectively, yields

r2Cxy
A þ ðk

2
0 � k2

zÞC
xy
A ¼ 0, (4)

r2Cxy
B þ ð

~k
2
� k2

zÞC
xy
B ¼ 0. (5)

Using the common axial wavenumber kz and the wavenumbers of the air and the absorbent material, k0 and
~k, the transversal wavenumbers in each subdomain kA;t and kB;t can be defined as

kA;t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 � k2

z

q
, (6)

~kB;t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2
� k2

z

q
, (7)
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and therefore the following equations are satisfied:

r2Cxy
A þ k2

A;tC
xy
A ¼ 0, (8)

r2Cxy
B þ

~k
2

B;tC
xy
B ¼ 0. (9)

The eigenproblem associated with the calculation of the axial wavenumbers and the corresponding
transversal modes is formulated in the next section.

Once the axial wavenumbers and the transversal modes of the complete cross-section are known, the
pressure field in the component under analysis can be expressed in terms of a series expansion

pðx; y; zÞ ¼
X1
s¼0

ðCþs e
�jkþz;szCxyþ

s þ C�s e
�jk�z;szCxy�

s Þ; (10)

where kþz;s and k�z;s are the axial wavenumbers of the incident and reflected waves in the component, and
Cþs and C�s are the corresponding wave coefficients.

2.2. Calculation of the transversal modes

To obtain the modes of the complete cross-section for the considered muffler component, the characteristic
equations of each component, Eqs. (4) and (5), must be solved taking into account the rigid wall boundary
conditions as well as those conditions related to the interface between subdomains. In this work, it is assumed
that both transversal subdomains are connected by a perforated duct characterized by the acoustic impedance
Zp that relates the jump of pressure between subdomains with the acoustic velocity normal to the interface.

The transversal pressure in each subdomain Cxy
A and Cxy

B can be expressed considering a set of modes
associated with the corresponding subdomains. The number of modes to provide an accurate pressure field
depends on the boundary condition to be satisfied. Here, two sets of modes are included in the representation
of the transversal pressure of each subdomain. The first set is obtained considering zero normal acoustic
velocity at the interface, and the second set is calculated considering a zero pressure boundary condition at the
interface. A scheme of this approach was previously depicted in Fig. 1. These two sets of modes may be
evaluated analytically in the case of circular cross-sections, which are widely used in automotive industry,
while a numerical calculation is in general required for more complex transversal geometries. Finally, the
transversal solution in each subdomain may be expressed as

Cxy
A ¼

X1
r¼0

fxy;u
A;r qu

A;r þ
X1
r¼1

fxy;p
A;r q

p
A;r, (11)

Cxy
B ¼

X1
r¼0

fxy;u
B;r qu

B;r þ
X1
r¼1

fxy;p
B;r q

p
B;r, (12)

where fxy;u
A;r ;f

xy;u
B;r and fxy;p

A;r ;f
xy;p
B;r are the pressure modes of the bases obtained for each subdomain with zero

normal velocity and zero pressure boundary conditions at the interface, respectively, and qu
A;r; q

p
A;r and,

qu
B;r; q

p
B;r are the modal participation factors.

From a practical point of view, the expansions must be truncated and only Nu
A;N

u
B zero velocity and N

p
A;N

p
B

zero pressure modes will be considered. Denoting by NA ¼ Nu
A þN

p
A and NB ¼ Nu

B þN
p
B, Eqs. (11) and (12)

may be expressed by

Cxyðx; yÞ ¼

PNA

r¼0

fxy
A;rðx; yÞqA;r ¼ UT

A � qA ðx; yÞ 2 A;

PNB

r¼0

fxy
B;rðx; yÞqB;r ¼ UT

B � qB ðx; yÞ 2 B:

8>>>><
>>>>:

(13)

Note here that the participation factors of each subdomain must be obtained to define the associated
transversal mode. The method of weighted residuals in combination with the Galerkin method is applied to
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Eqs. (4) and (5) to calculate the axial wavenumbers and their transversal modes. Multiplying Eq. (4) by the
transversal modes and integrating over A, the weighted residual is

ðk2
0 � k2

zÞ

Z
OA

Cxy
A Cxy

A dOþ
Z
OA

Cxy
A r

2Cxy
A dO ¼ 0. (14)

Applying the Green’s theorem to Eq. (14) yields

ðk2
0 � k2

zÞ

Z
OA

Cxy
A Cxy

A dO�
Z
OA

ðrCxy
A Þ

T
rCxy

A dO ¼ �
Z
GI

Cxy
A

qCxy
A

qn
dG. (15)

Both sets of modes are selected to satisfy the rigid wall condition at the outer boundary and, therefore, the
integral on the right hand side is extended only to the interface GI where the normal velocity is not zero. The
impedance associated with the perforated duct must be considered to evaluate this term. Using Euler’s
equation, the normal pressure gradient at the perforated surface may be written as

qCxy
A

qn
¼ �r0

quAn

qt
¼ �r0ojuAn, (16)

where uAn is the amplitude of the normal velocity at the interface.
From the definition of the perforate impedance, the following relation is satisfied:

Zp ¼
Cxy

A �Cxy
B

uAn

, (17)

and therefore the normal velocity in Eq. (16) can be eliminated by means of Eq. (17), giving

qCxy
A

qn
¼ �r0oj

Cxy
A �Cxy

B

Zp

. (18)

The substitution of the pressure fields given by Eq. (13) in Eq. (18) yields

qCxy
A

qn
¼ �

r0oj
Zp

UT
A � qA �UT

B � qB

� �
. (19)

Finally, Eqs. (13) and (19) can be introduced in Eq. (15) leading to

ðk2
z � k2

0Þ

Z
OA

UAUT
AqA dOþ

Z
OA

ðUArÞ
T
ðUArÞqA dO

¼ �
r0oj
Zp

Z
GI

UAðU
T
A � qA �UT

B � qBÞdG. ð20Þ

To get a more compact expression, the following matrices are defined

KA
O ¼

Z
OA

ðUArÞ
T
ðUArÞdO; M

A;A
G ¼

Z
GI

UAUT
A dG;

MA
O ¼

Z
OA

UAUT
A dO; M

A;B
G ¼

Z
GI

UAUT
B dG; ð21Þ

and after some manipulation, Eq. (20) can be expressed as

ðKA
O � k2

0M
A
O þ k2

zM
A
OÞqA ¼

r0oj
Zp

ðM
A;A
G qA �M

A;B
G qBÞ. (22)

In compact form

ðKAA
þ k2

zMAA
ÞqA þ KAA;BqB ¼ 0, (23)

where

KAA
¼ KA

O � k2
0M

A
O þ

r0oj
Zp

M
A;A
G ; KAA;B

¼ �
r0oj
Zp

M
A;B
G ; MAA

¼MA
O. (24)
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A similar procedure may be applied to Eq. (5). From Euler’s equation, the normal pressure gradient at the
perforated surface in the absorbent material (subdomain B) can be expressed as

qCxy
B

qn
¼ � ~r

quBn

qt
¼ � ~rojuBn, (25)

where ~r is the complex density associated with the absorbent material and uBn is the amplitude of the normal
velocity at the interface. Assuming continuity of velocity at the perforated interface and taking into account
that the unit vectors in the direction normal to the interface of both regions are opposite, gives

qCxy
B

qn
¼ � ~roj

Cxy
B �Cxy

A

Zp

. (26)

Operating in a similar way, the corresponding equation for subdomain B can be expressed as

KAB;AqA þ ðKA
B
þ k2

zMAB
ÞqB ¼ 0, (27)

with

KAB
¼ KB

O �
~k
2
MB

O þ
~roj
Zp

M
B;B
G ,

KAB;A
¼ �

~roj
Zp

M
B;A
G ,

MAB
¼MB

O,

KB
O ¼

Z
OB

ðUBrÞ
T
ðUBrÞdO,

MB
O ¼

Z
OB

UBUT
B dO;

M
B;A
G ¼

Z
GI

UBUT
A dG;

M
B;B
G ¼

Z
GI

UBUT
B dG: ð28Þ

Eqs. (23) and (27) can be expressed in matrix form as

KAA KAA;B

KAB;A KAB

 !
þ k2

z

MAA 0

0 MAB

 !" #
qA

qB

( )
¼

0

0

� �
, (29)

and compacting the notation yields

ðKAþ k2
zMAÞq ¼ 0. (30)

Eq. (30) is associated with a standard matrizant eigenproblem defined for each frequency of excitation o,
where the eigenvalues represent the axial wavenumbers and the eigenvectors are the participation factors of
the modal bases of each subdomain in the transversal mode of the complete cross-section. Since the modal
expansion of the transversal mode has been truncated to solve the problem, the solution is approximated.
Obviously a convergence of the pressure expansion to the real solution is expected when the number of modes
is increased. The error in the evaluation of the axial wavenumbers and the participation factors depends on the
number of modes employed in each subdomain (NA and NB, respectively). From a mathematical point of view,
the maximum number of transversal modes that can be calculated depends on the number of equations
considered, that is, the number of modes of the bases used in each subdomain.

2.3. Mode matching method with numerical transversal modal bases

The calculation of the transversal modes with the proposed method requires the previous computation of
two modal bases for each subdomain. These modal bases can be evaluated analytically if the geometry of the
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subdomains is relatively simple, leading to a straightforward computation of the integrals defined in Eqs. (21)
and (28). For transversal subdomains with complex geometry, however, the calculation of the modal bases
requires the application of a numerical technique such as the finite element method. Note here that this is
specially suitable in this case since the integrals expressed in Eqs. (21) and (28) can be evaluated by means of
the stiffness and mass matrices, as shown next.

The application of the finite element method to Eq. (8) leads to the eigenproblem [23]

ðKA þ k2
0MAÞ uA ¼ 0. (31)

The mass and stiffness matrices defined in Eq. (31) can be computed by the expressions

MA ¼
X

e

Z
Oe

NNT dO, (32)

KA ¼
X

e

Z
Oe

BBT dO, (33)

N and B being the shape functions and their spatial derivatives, respectively. If uA,k denotes the kth
eigenvector of the problem expressed in Eq. (31), then the associated mode is given by

fxy
A;k ¼ NT � uA;k. (34)

The element of the mass matrix ðMA
OÞi;j defined in Eq. (21) may be evaluated by

ðMA
OÞi;j ¼

Z
OA

UA;iU
T
A;j dO ¼ uT

A;iMAuA; j. (35)

It can be observed that the evaluation ofMA
O involves the use of the global mass matrix corresponding to the

finite element methodMA and therefore no additional integration is required. In addition, an element ðKA
OÞi;j of

the stiffness matrix can be computed using the expression

ðKA
OÞi;j ¼

Z
OA

ðUArÞ
T
ðUArÞdO ¼ uT

A;iKAuA;j. (36)

To calculate the elements of the matrices ðMA;A
G Þi;j and ðMA;B

G Þi;j associated with the boundary
integrals it is convenient to define conformal meshes between the two connected subdomains. In
this case,

ðM
A;A
G Þi;j ¼

R
OA

UAUT
A dO ¼ uT

A;iPAAuA;j ;

ðM
A;B
G Þi;j ¼

R
G1

UAUT
BdG ¼ uT

A;iPAAuB;j ;
(37)

where

PAA ¼
X

e

Z
Ge

NNT dG. (38)

The matrices required to obtain the modes of the cross-section may be calculated with Eqs. (35)–(37). Since
these results depend on the stiffness, mass and PA matrices of the finite element eigenproblem previously
computed to obtain the modal bases in each region, the computational effort is reduced.

The muffler shown in Fig. 3 illustrates the applicability of the proposed methodology. It is assumed that the
transversal modes of component 3 have been obtained with the method described above. Therefore, the
acoustic pressure field in this component is given by

p3A ¼
PN3

s¼0

ðCþ3;se
�jkþ3;z;szCxyþ

3A;s þ C�3;se
�jk�3;z;szCxy�

3A;sÞ;

p3B ¼
PN3

s¼0

ðCþ3;se
�jkþ3;z;szCxyþ

3B;s þ C�3;se
�jk�3;z;szCxy�

3B;sÞ;

(39)
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where the expansion has been truncated up to N3 component modes. There is no initial distinction
between progressive and regressive modes, and therefore all the modes in the bases considered
for each complete transversal mode must be included. Introducing a new notation, the pressure
fields are

p3A ¼
X2N3þ1

s¼0

C3;se
�jk3;z;szCxy

3A;s, (40)

p3B ¼
X2N3þ1

s¼0

C3;se
�jk3;z;szCxy

3B;s. (41)

The same considerations can be made regarding the axial acoustic velocity of component 3, that can then be
determined as

u3A;z ¼
�1

jr0o

X2N3þ1

s¼0

k3;z;sC3;se
�jk3;z;szCxy

3A;s, (42)

u3B;z ¼
�1

j ~ro

X2N3þ1

s¼0

k3;z;sC3;se
�jk3;z;szCxy

3B;s. (43)

The acoustic pressure and axial velocity fields associated with the rest of components included in the muffler
are given by

pi ¼
P2N1þ1

s¼0

Ci;se
�jki;z;szCxy

i;s ; i ¼ 1; 2; 4; 5;

ui;z ¼
�1

jrio
P2N1þ1

s¼0

ki;z;sCi;se
�jki;z;szCxy

i;s ; i ¼ 1; 2; 4; 5;

ri ¼
r0; i ¼ 1; 5;

~r; i ¼ 2; 4;

( (44)
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where the wavenumbers of each component are expressed as follows:

ki;z;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

i � k2
i;t

q
; i ¼ 1; 2; 4; 5,

ki ¼
k0; i ¼ 1; 5;

~k; i ¼ 2; 4:

(
ð45Þ

The transversal wavenumbers of the components can be obtained solving the following eigenproblem with
the corresponding boundary conditions:

DCxy
i þ k2

i;tC
xy
i ¼ 0; i ¼ 1; 2; 4; 5. (46)

To solve the acoustic problem in the muffler, all wave coefficients Ci;s for i ¼ 1,y,5, must be
computed. This task is performed using the mode matching method, which couples the acoustic
fields at the geometrical discontinuities [4] by means of the boundary conditions shown in Table 1.
For the computation of the integrals associated with the mode matching technique, the mass
matrix considered earlier in the finite element calculation of the modal bases can be employed, as
shown next.

The transversal modes of the component 3 defined in Eq. (13) may be expressed as

Cxy
3;sðx; yÞ ¼

UT
3A � q3A;s; ðx; yÞ 2 3A;

UT
3B � q3B;s; ðx; yÞ 2 3B:

(
(47)

The multiplication of two arbitrary modes yields

Cxy
3;iðx; yÞC

xy
3;jðx; yÞ ¼

ðq3A;iÞ
TU3AUT

3Aq3A;j ; ðx; yÞ 2 3A;

ðq3B;iÞ
TU3BUT

3Bq3B;j ; ðx; yÞ 2 3B;

8<
: (48)
Table 1

Type of boundary conditions at the interface between components of the muffler

Section Boundary condition Type of boundary condition

I p1 ¼ 1; ðx; yÞ 2 GI Pressure continuity

II ~u2 �~n ¼ 0; ðx; yÞ 2 GII Rigid wall

III p1 ¼ p3A; ðx; yÞ 2 GIIIA Pressure continuity

p2 ¼ p3B; ðx; yÞ 2 GIIIB Pressure continuity

ð~u1 þ~u2 þ~u3Þ �~n ¼ 0,

ðx; yÞ 2 GIII

Compatibility of velocity

IV p3A ¼ p5; ðx; yÞ 2 GIVA Pressure continuity

P3B ¼ P5; ðx; yÞ 2 GIVB Pressure continuity

ð~u3 þ~u4 þ~u5Þ �~n ¼ 0,

ðx; yÞ 2 GIV

Compatibility of velocity

V ~u4 �~n ¼ 0; ðx; yÞ 2 GV Rigid wall

VI p5 ¼ r0c0~u �~n; ðx; yÞ 2 GVI Anechoic termination
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and the integration over the cross-section leads toZ
GIV

Cxy
3;iC

xy
3;j dG ¼ ðq3A;iÞ

TM3A
O q3A;j þ ðq3B;iÞ

TM3B
O q3B;j, (49)

where the elements of the matrices M3A
O ;M

3B
O are obtained by means of Eq. (35) from the mass matrix

previously calculated with the finite element method.
For a muffler component with simple cross-section, the transversal modes can be evaluated analytically, and

therefore the integral on the left-hand side of Eq. (49) is easily computed. This is the case of a wide variety of
commercial mufflers that involve circular ducts, for which the transversal modes are known.

2.4. Considerations about the transversal modes

The weighted residual method has been employed in the previous section to obtain the transversal modes,
and therefore the resulting axial wavenumbers are approximated. The fulfilment of the boundary conditions
associated with the perforated tube is only enforced in a weak way and consequently the pressure given by the
procedure is not exact. To illustrate the convergence of the modal solution, some studies are carried out in this
section related to the transversal modes provided by the proposed method. The simple circular concentric
resonator with absorbent material presented by Cummings and Chang [24] is considered. In this example, the
perforated pipe is not included in the analysis, and the outer and inner radii are R2 ¼ 0:038m and
R1 ¼ 0:0198m, respectively. The model and data of the absorbent material are those considered in the work of
Cummings and Chang.

Fig. 4 shows the modulus of the transversal modes computed with the proposed method, the frequency
being 3 kHz. The calculations have been carried out considering 12 modes (6 modes associated with the zero
pressure condition at the interface and 6 modes for the zero velocity condition). The transversal modes
depicted have been normalized as in Ref. [24], with a maximum value equal to unity. It is found that the results
provided by the technique proposed here and those obtained by Cummings and Chang are in good agreement.

The convergence of the transversal modal solution is illustrated in Fig. 5, where the effect of increasing the
number of zero pressure and zero velocity basic modes is shown. It can be seen that the convergence is
adequate, since the solutions obtained with 12 and 16 basic modes are essentially identical. The participation
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factors of the zero pressure and zero velocity basic modes are depicted in Fig. 6, for the fundamental and
second least attenuated transversal modes. It is found a rapid convergence as the number of modes increases,
thus confirming the validity of the current approach.

3. Results and discussion

To check the accuracy of the proposed procedure, Fig. 7 shows the transmission loss associated
with the dissipative muffler considered by Cummings and Chang [24]. For comparison purposes, the
results given by the proposed procedure, as well as those from the method described in Ref. [24] and
three-dimensional finite element calculations, are included in the figure, the latter being obtained by the
commercial program SYSNOISE. For the current geometry and frequency range of interest, all three sets are
in good agreement, supporting the potential use of the method proposed here for the analysis of dissipative
mufflers.
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Fig. 8. Muffler considered to analyse the effect of the offset of the perforated duct.

Table 2

Offset distances for the perforated dissipative elliptical resonator with offset extended inlet/outlet

Silencer reference Offset distance Ex (m)

RCOVEX1 0.000

RCOVEX2 0.0339

RCOVEX3 0.0678
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To illustrate the application of the proposed technique for more complex mufflers, the influence of the offset
distance associated with the central passage is analysed for the perforated dissipative elliptical resonator with
offset extended inlet/outlet shown in Fig. 8. Table 2 shows the offset distances considered to evaluate the
behaviour of this type of muffler. The current analysis considers a low resistivity fiber defined in Appendix A,
in order to obtain a clear influence of the offset distance. The use of high resistivity fiber, such as this used in
Fig. 7, strongly dampens this effect, thus justifying the use of a different material in the current discussion. The
impedance of the perforated tube, defined in Appendix A, incorporates the effect of the absorbent material.
The hole diameter of the perforated surface is dh ¼ 0:003m, the thickness of the tube is th ¼ 0:001m and the
porosity is defined by s ¼ 5%.

The modal bases of the transversal subdomains were computed by the finite element package SYSNOISE
with the meshes shown in Fig. 9. In all the cases, quadratic quadrilateral elements are considered. Fig. 9 also
displays the number of nodes of each mesh and the frequencies of the first three modes of the bases, associated
with zero velocity and zero pressure at the interface between subdomains.

To clarify the combined effect of the absorbent material and the offset distance, purely reactive
mufflers are considered first. For this case, the influence of the offset distance in the TL is shown in Fig. 10.
In the low frequency range, the TL is similar for the three configurations due to the predominance
of one-dimensional wave propagation. For higher frequencies, the propagation of higher order modes
begins and the transmission loss for each muffler is different since the frequency of the transversal
modes changes with the offset distance of the central duct. An increase in the offset distance is shown to
lead to multidimensional propagation at lower frequencies, and therefore a worse acoustic attenuation is
produced in a wide frequency range. As a consequence of the propagation of the higher order modes,
the transmission loss is reduced drastically, and only in relatively narrow frequency bands keeps a reason-
able value.

Fig. 11 shows the TL for the same geometries analysed in the previous figure, now including absorbent
material inside the muffler. In the current case the transmission loss does not exhibit the drastic collapse
associated with the propagation of higher order modes and a reasonable attenuation is obtained for
frequencies below 1500Hz. The peaks and pass bands observed in Fig. 10 have disappeared and the maximum
value of the transmission loss shifts to higher frequencies when the offset is increased. This means that the
maximum attenuation band between 500 and 1500Hz can be selected by an appropriate offset distance. For
high frequencies the TL seems to be independent of the position of the central perforated tube, since all the
curves tend to the same value.
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4. Concluding remarks

This work has presented a new modal method to calculate the acoustic behaviour of perforated dissipative
mufflers involving ducts with arbitrary (but axially uniform) cross-section. First, the different cross-sections
have been divided into disjoint subdomains. Two modal bases have been considered for each subdomain,
associated with zero normal velocity and zero pressure boundary conditions at the interface between
subdomains of the same cross-section. Then, the complete transversal modes have been evaluated by
component mode synthesis. Finally, the mode matching method has been applied at the geometrical
discontinuities to calculate the global acoustic behaviour of the muffler. The proposed methodology has been
validated by comparison with three-dimensional finite element calculations. In addition, the procedure has
been used for the analysis of the acoustic attenuation performance of a perforated dissipative elliptical
resonator with offset extended inlet/outlet. Although no mean flow has been considered in the current work, it
should be noted, however, that the approach described here may easily be extended to the mean flow case.
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Appendix A. Models for the absorbent material and the perforated pipe impedance

The absorbent material model presented by Delany and Bazley [25], applied to the material characterized by
Xu et al. [20] is considered. The complex wavenumber of the absorbent material is expressed as

~k

k0
¼ 1þ 0:1472

o
2pR

� ��0:577
� j0:1734

o
2pR

� ��0:595
, (A.1)

R being the flow resistivity. It is possible to define an equivalent complex speed of sound in the absorbent
material by means of

~c ¼
o
~k
. (A.2)

For the characteristic impedance of the absorbent material, the expression is

~Z

Z0
¼ 1þ 0:0855

o
2pR

� ��0:754
� j0:0765

o
2pR

� ��0:732
, (A.3)
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and the equivalent complex density of the absorbent can be obtained from Eqs. (A.1)–(A.3), yielding

~r ¼
~Z

~c
¼

~Z ~k

o
. (A.4)

In this work, the resistivity of the absorbent material is R ¼ 4896 rayl/m, associated with a density of
100 kg/m3.

To account for the presence of the absorbent material, the expression of the perforated pipe impedance is
modified [26], giving

Zp ¼
r0c0

s
0:006þ jk0 th þ 0:375dh 1þ

~Z

Z0

~k

k0

 !" # !
, (A.5)

where th is the thickness of the perforated pipe, dh the diameter of the orifices and s is the porosity.
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